
Application Note 1326

8 Hints For Solving Common
Debugging Problems
With Your Logic Analyzer

2

Table of Contents

Hint 1: Acquiring Data From a Multiplexed Address/Data Bus 3

Hint 2: What to do When Your Target System is Functioning Normally,

but the Data You Capture Does Not Appear to be Valid 4

Hint 3: Using a "Golden Trace" to Troubleshoot Unexpected System Changes 6

Hint 4: Using Offsets to Avoid False Triggers 7

Hint 5: Reducing Security Risks on Networked Logic Analyzers 8

Hint 6: How to Capture Data Before a System Crash 9

Hint 7: Analyzing Serial Data with a Logic Analyzer 11

Hint 8: Generating Files for a Pattern Generator Using Third-Party EDA Tools 13

Reducing the Complexity
in Your Job

Logic analyzers are complex instru-

ments. They have to be in order to

handle the capabilities of today’s

advanced electronic devices.

Unfortunately, the complexity of logic

analyzers can cause you headaches

when you need critical information

about your digital designs.

Yet using a logic analyzer is frequently

the best way, and sometimes the only

way, to understand how your device is

working, or why it’s not. So, if you

need to look at your logic in state

mode, for example, or examine timing

relationships on a large number of

channels, you might reluctantly

pull out your logic analyzer. Sound

familiar?

We’d like to help you overcome your

reluctance by helping you build the

measurement expertise you need to do

your job. That’s why we’ve gathered

and published these hints. They are

not intended to be comprehensive

tutorials. They are suggestions

intended to help you understand how

you can use logic analyzers most effec-

tively and how they can help you save

time in getting your job done.

3

Many engineers who
design with modern
microprocessors and
micro-controllers use
multiplexed buses in
order to conserve pins
and reduce cost.
Engineers used this

technique in early processors such as
the Intel 8088, and they’re using it in
current processors such as custom-
cored ASICs. In order to effectively
capture the information you need
in this complex design arena, you need
a logic analyzer with specialized
features.

Today’s logic analyzers offer specific
clocking capabilities to handle the
acquisition of address and data from
multiplexed buses. You can capture
information on two different clock

events, one when the address is valid
and another when the data is valid.
Because the bus is multiplexed, you
only need one set of logic analyzer
probes. You can connect the logic
analyzer probes to the multiplexed
address/data bus either with
individual probes or through a probing
adapter.

Since the sample clocks are coming
from the device under test, set
the analyzer to "State" or
"Synchronous" mode.

The key to making this measurement
is to determine the clock or clock
combination for the address phase
and for the data phase. If these are
not different, the bus is not
really multiplexed.

An example of a multiplexed bus:

address clock specification:
CLK rising AND ADS# = low (true)
data clock specification:
CLK rising AND DS# = low (true)

As an example, in the Agilent
Technologies 16700B Series logic
analyzers, you can go to the Logic
Analysis System window and click on
the Logic Analysis card. From the
pop-up menu, select ‘Setup’, then click
on the Sampling tab. On this screen,
you can set your logic analyzer to
"Demultiplex" clocking mode, as
shown in Figure 1.1. This screen also
allows you to specify the logic for the
master and slave clocks. Then go to
the Format tab, shown in Figure 1.2,
and assign the pins for your logic
analyzer probe.

Note that your logic analyzer’s setup
and hold requirements in demultiplex
clocking mode may be different from
those in normal clocking mode. Check
your logic analyzer's specifications
for details.

Acquiring Data From a Multiplexed Address/Data Bus

HINT

11
HINT HINT HINT

HINT HINT HINT HINT

CLK

ADS

DS

BUSADDR DATA

Figure 1.1 Sampling Clocking Mode

Select
Demultiplex
mode

Figure 1.2 Formatting Clock Mode

Read
address here

Read
data here

Assign
pins
here

4

This situation occurs
in several circum-
stances:

1. When your logic
analyzer sampling
thresholds do not

match your target system’s
switching characteristics

2. When you’re in state sampling mode
and your target system does not
meet the setup and hold times
required by your logic analyzer

3. When the target system generates
excessive noise (ground bounce,
simultaneous switching noise or
crosstalk), causing the analyzer
to sample incorrectly.

Adjusting various logic analyzer
settings often solves the first two
conditions. The third condition, noise,
is most often only solved by design
changes to your board.

Let’s look at the first two situations.

Different logic families have different
switching thresholds.

Some examples are:

TTL => 1.5V

5V CMOS => 2.5V

3.3V CMOS => 1.6V

If you suspect that sampling
thresholds may be the cause of
your problem, then the solution is
straightforward. First, identify the
logic families (and therefore, the
switching voltage) of the signals you
are probing. Next, change the
threshold settings on the logic
analyzer. Some analyzers allow you to
set different thresholds for different
groups of signals. The Agilent
Technologies 16700B Series logic
analyzers allow independent settings
on 16 channel (1 pod) boundaries.
In addition to the standard switching
thresholds, these logic analyzers allow
you to specify any arbitrary threshold.

From the Logic Analysis System
window, click on the Logic Analysis
card. From the pop-up menu, select
‘Setup’ to get the Setup screen and go
to the Format tab. This screen allows
you to change both the sampling
threshold and the setup and hold
times. Figure 2.1 shows the threshold
setup
dialog box.

What to do When Your Target System is Functioning Normally, but the Data
You Capture Does Not Appear to be Valid

HINT HINT

22
HINT HINT

HINT HINT HINT HINT

Figure 2.1 Changing Your Analyzer’s Thresholds

Change threshold here

Click here

5

The second situation involves setup
and hold times and only occurs when
you sample based on the clock
supplied by the target system.

The solution here is also relatively
straightforward. First, determine the
setup and hold requirements of the
logic you are probing. Hopefully, you
considered this in your design because
the interconnected IC’s must satisfy
each other’s setup and hold require-
ments. Next, determine the setup and
hold time requirements for your logic
analyzer. Does your target meet the
logic analyzer’s required time? If the
"window" (setup+hold) supplied is
smaller than that required by the logic
analyzer, you may need to upgrade
your logic analyzer. If the window is

larger, but either the setup or hold
time is violated, you may be in luck.
Some logic analyzers allow you to
adjust the window as needed.

The example given shows that you can
adjust from 4.0 ns setup and 0.0 ns
hold time all the way to 0.0 ns setup
and 4.0 ns hold time, in 0.5 ns incre-
ments. It also allows you to set
different channel groups differently.
Figure 2.2 demonstrates this.

The techniques mentioned above
of adjusting your thresholds and
setup/hold windows can be valuable
ways to squeeze more mileage out of
your analyzer, especially if your target
system is heavily taxing the capabil-
ities of your current analyzer.

If your logic analyzer meets the speci-
fications required by your target
system, and neither of these
techniques solve your problems, you
most likely have a noise problem.
That means it’s time to get your oscil-
loscope back out and put on your
analog designer hat.

Figure 2.2 Adjusting Setup and Hold Times

Select the setup/hold time from
the popup window

6

When you are devel-
oping your target
system and it is
working properly, life
is good. This is the
time you should
connect your target to

a logic analyzer and capture a ‘golden
trace’ of the signals. Performing this
small task might save the day if your
target system starts behaving
unexpectedly.

If you have saved a ‘golden trace,’ you
can use your logic analyzer’s Compare
tool to zero in on the problem. The
Compare tool takes data from a stored
‘golden trace’ file and compares it to a
real-time trace so that you can find the
differences. You can set up the
Compare tool to perform the
comparison on specific signals or
buses, or on all signals or buses that
are present in both data sources. You
can also set it up in a repetitive run
mode in which each new run is

compared to a data file. The analyzer
will stop capturing and comparing
data when it finds a difference.

In the example shown in Figure 3.1,
the Compare tool has an analyzer as
one data source and a data file as the
other. The data file represents your
stored ‘golden trace.’ You can display
the results of the comparison using a
Listing tool.

Right click on the Compare icon and
select Setup from the pop-up menu. In
the Setup dialog, right click on the Run
button and select ‘Repetitive’ from the
pop-up menu. Then click on the Run
button to run the Compare tool repeti-
tively. When the measurements stop,
use the listing window to examine the
exact state on which the difference
occurred.

In the listing window, you can search
on the "DiffFlag" label to find the exact
state on which the comparison failed,
as shown in Figure 3.2. The data that

is different in each source is
highlighted.

This technique shows you what
changed between your ‘golden trace’
and the current trace and helps you
quickly identify what caused
the problem.

Often, simulators are used to test
software when hardware is not yet
available. When the first versions of
the hardware become available, the
software that was tested and working
on the simulation system may
not work on the actual system
hardware. You can use the Compare
tool to compare simulation data (that
has been run through a conversion
program so that it can be read by the
analyzer) with real acquired data. This
helps you with hardware/software
integration by letting you quickly find
signals that are not behaving as they
did in the simulations.

Using a "Golden Trace" to Troubleshoot Unexpected System Changes

HINT HINT HINT

33
HINT

HINT HINT HINT HINT

Figure 3.1 Using the Compare Tool on Signals or Buses

Your stored "golden trace" file

Figure 3.2 Using the DiffFlag Function to Identify Changes

Where differences occur, data is shown in a different color

7

Because today’s
processors have
very complex and
deep pipelines and
prefetch queues, many
instructions can be
fetched and brought

across the bus and yet never be
executed. This makes it difficult to
accurately set the trigger on your logic
analyzer. When the logic analyzer
triggers on one of these unexecuted
fetches a false
trigger results.

This problem typically occurs when
you’re trying to trigger on a line of
code that is directly after a function
call or the end of a loop. Setting a
trigger on lines 25 or 57 in the
following example code may result in
false triggers (see Figure 4.1).

One way to avoid false triggers in
these situations is to use a trigger
offset. A trigger offset indicates that
the logic analyzer should trigger on a

given address only if the address value
itself is captured and the address
value that is the trigger address plus
the offset value is also captured. This
tells the analyzer to trigger only if the
address of interest is captured AND an
address that is some number of bytes
away is also captured.

Typically, the offset value should be
the number of bytes that the prefetch
queue and pipeline can hold. For
example, the processor being used has
a four-instruction queue and each
instruction is 32 bits (or 4 bytes).
The processor also has a one-
instruction prefetch queue (another 4
bytes). The offset for this processor
should be 20 bytes (5 instructions
total).

Note that this is not a foolproof
scheme for avoiding these types of
false triggers. Using an offset of the
full prefetch queue depth and
pipelining queue depth could result in
a missed trigger if a branch takes place

between the base address and the
offset address. In this case, the queue
depth is too large of an offset. Reduce
the offset to avoid completely missing
the trigger.

Using Offsets to Avoid False Triggers

HINT HINT HINT HINT

44
HINT HINT HINT HINT

Line # C source code

11 for(int i=0;i<MAX_LOOP;i++)

12 {

.....

24 }

25 count++;

.. ...

56 storeCount(count);

57 count++;

Figure 4.1 C Source Code

8

Without special
precautions, having
your logic analyzer on
the network might
pose a security risk.
People using the
analyzer might have
access to files on other

networked machines that they are not
supposed to access. And, can
inversely, people on the network might
have access to data on the logic
analyzer that they are not supposed to
see. The overall responsibility for
security is on the shoulders of your
network administrators, but if the
logic analyzer does not provide some
basic security features, such as user
accounts (logins), passwords, file
permissions, etc., you may be out
of luck.

Most modern logic analyzers provide
the features needed to make
themselves "good network citizens."
These analyzers allow you to set up
user accounts and passwords to
control who can use the analyzer. In
addition, they allow you to specify file
permissions for individual users so
that you can control access to the data
on the logic analyzer. They also allow
you to share files on a network in a
controlled fashion.

The screen shot in Figure 5.1 shows
the "Secure Mode" setup dialog, and
indicates how the various features
provided are set up. You can access
this dialog box through the Main
Window "System Admin" dialog, and
then select the "Security" tab. Click on
"User Accounts" to manage user
information.

Reducing Security Risks on Networked Logic Analyzers

HINT HINT HINT HINT

HINT

55
HINT HINT HINT

Figure 5.1 Secure Mode Setup

Click here to assign permissions.

Figure 5.2 Assigning Passwords

9

How to Capture Data Before a System Crash

Capturing the cause of
a system crash can be
tricky with a logic
analyzer. This is true
because you have to
get the instrument to
trigger when nothing

happens. How do you describe
"nothing" to a logic analyzer's trigger
menu? One tried-and-true technique
is to set up the logic analyzer to store
only the data of interest and never
trigger. Then you can stop the
instrument manually when the system
under test crashes. When this
technique works, the logic analyzer
has a history stored in its pretrigger
trace buffer. But this technique only
works if you can set up your logic
analyzer to capture meaningful infor-
mation, then stop when the system
under test crashes.

Here’s one way around the problem:
use a timer in the logic analyzer to get
a trigger soon after the system crashes.
To use a timer in the trigger, first
figure out what event should happen
regularly in order for you to consider
your system under test alive and

working fine. Let’s call this event the
system's "heartbeat". This could be an
address-strobe, a periodic interrupt, or
anything that occurs consistently at
some minimum frequency. Then set a
timer equal to the longest period
between successive heartbeats that
you would expect to see before you
would consider the system nonfunc-
tional. In the trigger sequence, if you
start the timer when a heartbeat
occurs, and restart the timer whenever
another heartbeat occurs, you can
then test if the timer reaches the
maximum value that you set. If the
timer reaches the maximum value,
then the logic analyzer should trigger,
since the "heartbeat" isn't occurring as
often as it should. You can also exper-
iment with the timer value to
determine just how long a period
between "heartbeats"
is normal.

Here’s an example of this trigger timer
idea using an Agilent Technologies
1670G, a benchtop logic analyzer and
an optional integrated oscilloscope.
Set up the logic analyzer trigger like
you see in Figure 6.1.

HINT HINT HINT HINT

HINT HINT

66
HINT HINT

Figure 6.1 Configuring a "Heartbeat" Trigger

10

The "heartbeat" in this example is a
signal that consistently occurs at 8 µs
intervals. This trigger setup will force
a trigger 10 µs after the last
"heartbeat". With the Agilent
Technologies 1670G, you can send the
trigger to the oscilloscope, which is
also probing the device under test, to
get a better understanding of the cause
of the crash. Figure 6.2 shows what
the oscilloscope caught
10 µs prior to the trigger that it
received from the logic analyzer.

In this case, the oscilloscope can help
get to the cause of the system crash.
Without an actual trigger event, there
would be no trigger signal to send to
the oscilloscope. Using timers in a
logic analyzer's trigger system can
allow you to trigger on "nothing" since
you can describe the condition as too
much time between successive "heart-
beats".

Figure 6.2 Oscilloscope Display of Results

Analyzing Serial Data with a Logic Analyzer

While logic analyzers
are commonly used to
analyze parallel data
(e.g. microprocessor
address and data),
some modern logic
analyzers also allow
you to analyze serial

data. This feature comes in handy
when you are trying to debug simple
serial protocols such as RS-232C,
CAN, LAN, USB or your proprietary
bus. A logic analyzer is not a tool for
analyzing higher-level protocols such
as TCP-IP. You will need a protocol
analyzer for that task.

Here’s an example of how to use an
Agilent Technologies 16700B Series
logic analyzer to analyze
and troubleshoot data from an RS-
232C output port. Once you have
connected the serial port on your
target system to the logic analyzer
through one of its data pods, you will
need to put the logic analyzer in the
"Timing" or "Asynchronous" mode
because the sampling clock is being
supplied by the logic analyzer. Even
though you are in timing analysis
mode, you will be able to view the data
as parallel information in a listing
form. Next you will need to assign a
label (Serial) to the input data bit. The
RS-232C protocol has a data format
with 1 start bit, 8 data bits, and 1.5
stop bits, as shown in Figure 7.1.

To capture the data, you can set the
trigger on any data value. Here we
have set the trigger on the start bit.
Once you have done this, you will need
to create the Serial Analysis tool from
the Analysis tab on the Listing display
window. This will bring up the Serial
Analysis window, as shown in
Figure 7.2.

Select the Serial input label and create
an output Parallel label with a word
width of 8 bits, with the LSB as the
first bit. This box will also allow you
to invert the input data so that it
becomes easy to analyze. Now comes
the really neat part! You will have to
specify to the logic analyzer how you
would like the input frame to be
processed. Select the box for frame
processing on this dialog box and click
on the define button.

11

HINT HINT HINT HINT

HINT HINT HINT

77
HINT

LSB

104.17 µs

MSB

Start
Bit 1.5 Stop Bits

8 Data Bits

Make sure this box is selected.

Then click on the Define button to bring up the Frame
Parameters dialog boxes.

Figure 7.2 Serial Analysis Window

Figure 7.1 Timing for RS-232C Before it is Inverted.

12

In the dialog box for specifying
the frame parameters, you can specify
the start of the frame to have the label
“Start”, as shown in Figure 7.3. It is
binary and has a width of 1 bit. Under
the Data Block tab, uncheck the box
for stuffed 0s because the RS-232C
protocol does not do any bit stuffing.
Since you do not need to perform any
pattern manipulation, pass the entire
data block through. In a similar
fashion, under the End of Frame tab
you will need to specify that the frame
ends after 8 bits, as shown in Figure
7.5. Having done all this work, you are
now ready to look at the serial data.
Figure 7.6 shows a listing of the data,
looking at just the Parallel labels. It
shows the serial data coming down the
output port.

As you can see, the Serial Analysis tool
in the logic analyzer gives you the
versatility to analyze and debug serial
protocols.

Figure 7.3 Start of Frame Tab

Figure 7.4 Data Block Tab

Figure 7.5 End of Frame Tab

Figure 7.6 Data Listing

13

Electronic Design
Automation (EDA)
tools have become
an integral part of
most engineers’ tool
sets. You can use
EDA tools for

drawing, analyzing, simulating and
documenting the circuits that you are
working on. Wouldn’t it be nice if you
could leverage the work that you did in
your EDA environment while debugging
your prototype? The pattern generators
that are integrated into the Agilent
Technologies logic analyzers allow you
to do this without much trouble.

With shrinking times-to-market, you
typically cannot wait for your
prototype to be complete before you
start testing. Suppose your circuit
board is ready but your third-party
partner has not yet delivered your
ASIC. The pattern generators available
in the Agilent Technologies logic
analyzers allow you to debug your
circuit by replacing the missing
components. All you need to do is
program the pattern generator and
hook it to the circuit where the ASIC
belongs. The integrated pattern
generator will stimulate your circuit
while you analyze it using the logic
analyzer.

SynaptiCAD, the creators of
WaveFormer Pro, an EDA tool used
for drawing, analyzing, simulating, and
documenting timing diagrams, has
worked closely with Agilent
Technologies to make it easy for you to
export your timing diagrams to
Agilent’s pattern generators. Once you
have created your timing diagram
using WaveFormer Pro, make sure
that it includes a sampling clock and
user-created signals because the
signals are sampled using the first
clock in the timing diagram. In
addition, the diagram should include
at least one documentation marker.
The first documentation marker found
in the timing diagram denotes the
beginning of the main sequence
(separating the initialization from the
main section). If no documentation
marker is present, only main
sequences will appear (i.e., no initial
sequences).

As shown in Figure 8.1, in order to
export a timing diagram to a pattern
generator, simply go the Export menu
in WaveFormer Pro and select ‘Export
Signals As’. This will bring up a dialog
box that will allow you to save your
file either as HP pattern generator disk
format (disk *.hpd) or HP pattern
generator bus format (bus *.hpb). The
*.hpd format is used for file transfer

via network or diskette. The *.hpb
format uses the GP-IB bus for file
transfer.

It’s also possible to generate input files
for the pattern generator without
using an EDA tool. You can either
program the pattern generator using
the system interface or you can type
the pattern generator commands in an
ASCII file and import them into the
pattern generator.

Here is an example of a file that you
can load into the pattern generator.

HINT HINT HINT HINT

HINT HINT HINT HINT

88

Figure 8.1 Exporting a File From WaveFormer Pro

ASCII 000000
ASCDOWN
FORM: MODE FULL
LABEL 'LAB1',8
LABEL 'DATA',8
LABEL 'TEST',9
LABEL 'CLK',3
VECT #800000092
12 34 56 7
0 22 7 0
A0 33 00 1
*M
92 6F 00 1
CA CA 00 1
00 10 11 0

Generating Files for Agilent Technologies Pattern Generator Using Third-Party EDA Tools

14

In the 1670G logic analyzer, go to the
System screen and select the file that
you created above. As shown in Figure
8.2, select the Load button, then select
the Pattern Generator button and click
on the Execute button.

That is all you have to do. The data in
the input file has been imported into
your pattern generator! Figure 8.3
shows the pin assignments in the
pattern generator and Figure 8.4
shows the pattern generator sequence
that will result from your actions.

Figure 8.2 Selecting the File to Load Into the Pattern Generator

Figure 8.3 Pattern Generator Pin Assignments

Figure 8.4 Pattern Generator Sequence

The combination of WaveFormer Pro
and an Agilent Technologies logic
analyzer makes a very powerful
design and debugging tool. The
above hint shows how to get data
from WaveFormer Pro into Agilent’s
pattern generators. In addition, data
captured by your logic analyzer can
be imported into WaveFormer Pro.
The circuit operations captured by
the logic analyzers can be translated
by WaveFormer Pro into stimulus
files for driving the simulations to
test your circuit design. For more
information, see your logic analyzer
user manual or go to
www.syncad.com.

21

3

15

Agilent Technologies 16700B Series
Logic Analysis Systems

With the power of the latest
technology and the familiarity of
windows, the Agilent Technologies
16700B Series logic analysis systems
offer a single solution for hardware,
software and system debugging.

Hardware designers get measurement
power plus processor execution
control, register access and other tools
to explore software-dependent
hardware problems such as interrupt
handling.

Software designers get debugging and
analysis tools that overcome the
drawbacks of traditional emulation,
while providing an easier way to solve
hardware-dependent software
problems that only a logic analyzer
can uncover.

System designers get time-correlated
views showing system activity from
analog signals all the way to source
code. The Agilent Technologies logic
analysis systems’ cross-domain
displays minimize the mysteries of
hardware-software interaction,
helping your team track symptoms
back to root causes quickly and confi-
dently.

The 16700B and 16702B are high-
performance platforms for applica-
tions that use 32- or 64-bit micropro-
cessors in multiprocessor systems;
core-based ASICs; or systems on
silicon.

For more information on Agilent
Technologies logic analysis systems,
visit
http://www.agilent.com/find/LAsystems

Cost-Effective Solutions That Match Your
Specific Application Needs

The Agilent Technologies 1670 Series
benchtop analyzers offer cost-effective
150 MHz state analysis and 500 MHz
timing analysis, and a color, flat-panel
display with built-in VGA resolution.
Oscilloscope, pattern generator, and
deep memory features in the 1670
Series give you the capability to
configure a solution that meets your
demanding troubleshooting
challenges.

Navigating through the user interface
is made simple via your choice of
either mouse or front-panel operation.
An optional keyboard is also available.

Graphical trigger macros assist in
making powerful measurements.
Trigger set-ups can be selected from a
categorized list of trigger macros. Each
macro is shown in graphical form and
has a written description. Macros can
be chained together to create a custom
trigger sequence.

For more information on Agilent
benchtop logic analyzers, visit
http://www.agilent.com/find/
LAbenchtop

Logic Analyzer Families to Help You Get Your Job Done

Figure 8.5 Agilent Technologies 1670G Series Benchtop Logic Analyzers

www.agilent.com

Agilent Technologies’ Test and Measurement Support, Services, and Assistance
Agilent Technologies aims to maximize the value you receive, while minimizing your risk
and problems. We strive to ensure that you get the test and measurement capabilities you
paid for and obtain the support you need. Our extensive support resources and services can
help you choose the right Agilent products for your applications and apply them
successfully. Every instrument and system we sell has a global warranty. Support is
available for at least five years beyond the production life of the product. Two concepts
underlie Agilent's overall support policy: "Our Promise" and "Your Advantage."

Our Promise
Our Promise means your Agilent test and measurement equipment will meet its advertised
performance and functionality. When you are choosing new equipment, we will help you
with product information, including realistic performance specifications and practical
recommendations from experienced test engineers. When you use Agilent equipment, we
can verify that it works properly, help with product operation, and provide basic
measurement assistance for the use of specified capabilities, at no extra cost upon request.
Many self-help tools are available.

Your Advantage
Your Advantage means that Agilent offers a wide range of additional expert test and
measurement services, which you can purchase according to your unique technical and
business needs. Solve problems efficiently and gain a competitive edge by contracting with
us for calibration, extra-cost upgrades, out-of-warranty repairs, and onsite education and
training, as well as design, system integration, project management, and other professional
engineering services. Experienced Agilent engineers and technicians worldwide can help
you maximize your productivity, optimize the return on investment of your Agilent
instruments and systems, and obtain dependable measurement accuracy for the life of
those products.

For more information on Agilent Technologies
products, applications or services, please
contact your local Agilent office.

The complete listing is available at:
www.agilent.com/find/contactus

Phone or Fax
United States:
(tel) 800 829 4444
(fax) 800 829 4433

Canada:
(tel) 877 894 4414
(fax) 800 746 4866

China:
(tel) 800 810 0189
(fax) 800 820 2816

Japan:
(tel) (81) 426 56 7832
(fax) (81) 426 56 7840

Korea:
(tel) (080) 769 0800
(fax) (080) 769 0900

Latin America:
headquarters:
(tel) (305) 269 7500

Taiwan:
(tel) 0800 047 866
(fax) 0800 286 331

Other Asia Pacific Countries:
(tel) (65) 6375 8100
(fax) (65) 6755 0042
Email: tm_ap@agilent.com

Product specifications and descriptions in this
document subject to change without notice.

© Agilent Technologies, Inc. 2004
Printed in USA September 16, 2004

5968-5700E

www.agilent.com/find/emailupdates
Get the latest information on the products and applications you select.

Agilent T&M Software and Connectivity
Agilent's Test and Measurement software and connectivity products, solutions and
developer network allows you to take time out of connecting your instruments to your
computer with tools based on PC standards, so you can focus on your tasks, not on your
connections. Visit www.agilent.com/find/connectivity for more information.

www.agilent.com/find/agilentdirect
Quickly choose and use your test equipment solutions with confidence.

Agilent Email Updates

Agilent Direct

	8 Hints For Solving Common Debugging Problems
	Reducing the Complexity in Your Job
	HINT 1 Acquiring Data From a Multiplexed Address/Data Bus
	HINT 2 What to do When Your Target System
	HINT 3 Using a "Golden Trace" to Troubleshoot
	HINT 4 Using Offsets to Avoid False Triggers
	HINT 5 Reducing Security Risks on Networked Logic Analyzers
	HINT 6 How to Capture Data Before a System Crash
	HINT 7 Analyzing Serial Data with a Logic Analyzer
	HINT 8 Generating Files for Agilent Technologies
	Help You Get Your Job Done
	Agilent Technologies’ Test and Measurement Support, Services, and Assistance

